boundedly complete - definitie. Wat is boundedly complete
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is boundedly complete - definitie

COMPLEXITY CLASS
PSPACE complete; Pspace-complete; PSPACE-Complete; Pspace-Complete

boundedly complete      
In domain theory, a complete partial order is boundedly complete if every bounded subset has a least upper bound. Also called consistently complete.
complete graph         
SIMPLE UNDIRECTED GRAPH IN WHICH EVERY PAIR OF DISTINCT VERTICES IS CONNECTED BY A UNIQUE EDGE
Full graph; Complete Digraph; Complete digraph; K n; Tetrahedral Graph; Complete graphs
A graph which has a link between every pair of nodes. A complete bipartite graph can be partitioned into two subsets of nodes such that each node is joined to every node in the other subset. (1995-01-24)
Complete (complexity)         
NOTION OF THE "HARDEST" OR "MOST GENERAL" PROBLEM IN A COMPLEXITY CLASS
Complete problem; Hard (complexity)
In computational complexity theory, a computational problem is complete for a complexity class if it is, in a technical sense, among the "hardest" (or "most expressive") problems in the complexity class.

Wikipedia

PSPACE-complete

In computational complexity theory, a decision problem is PSPACE-complete if it can be solved using an amount of memory that is polynomial in the input length (polynomial space) and if every other problem that can be solved in polynomial space can be transformed to it in polynomial time. The problems that are PSPACE-complete can be thought of as the hardest problems in PSPACE, the class of decision problems solvable in polynomial space, because a solution to any one such problem could easily be used to solve any other problem in PSPACE.

Problems known to be PSPACE-complete include determining properties of regular expressions and context-sensitive grammars, determining the truth of quantified Boolean formulas, step-by-step changes between solutions of combinatorial optimization problems, and many puzzles and games.